The Double Gromov-witten Invariants of Hirzebruch Surfaces Are Piecewise Polynomial

نویسندگان

  • FEDERICO ARDILA
  • ERWAN BRUGALLÉ
چکیده

We define the double Gromov-Witten invariants of Hirzebruch surfaces in analogy with double Hurwitz numbers, and we prove that they satisfy a piecewise polynomiality property analogous to their 1-dimensional counterpart. Furthermore we show that each polynomial piece is either even or odd, and we compute its degree. Our methods combine floor diagrams and Ehrhart theory.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Counting Generic Genus–0 Curves on Hirzebruch Surfaces

Hirzebruch surfaces Fk provide an excellent example to underline the fact that in general symplectic manifolds, Gromov–Witten invariants might well count curves in the boundary components of the moduli spaces. We use this example to explain in detail that the counting argument given by Batyrev in [Bat93] for toric manifolds does not work (also see [Sie99, Proposition 4.6]).

متن کامل

Counting Curves on Rational Surfaces

In [CH3], Caporaso and Harris derive recursive formulas counting nodal plane curves of degree d and geometric genus g in the plane (through the appropriate number of fixed general points). We rephrase their arguments in the language of maps, and extend them to other rational surfaces, and other specified intersections with a divisor. As applications, (i) we count irreducible curves on Hirzebruc...

متن کامل

Hilbert scheme intersection numbers , Hurwitz numbers , and Gromov - Witten invariants

Some connections of the ordinary intersection numbers of the Hilbert scheme of points on surfaces to the Hurwitz numbers for P1 as well as to the relative Gromov-Witten invariants of P1 are established.

متن کامل

Double and Triple Givental’s J -functions for Stable Quotients Invariants

We use mirror formulas for the stable quotients analogue of Givental’s J-function for twisted projective invariants obtained in a previous paper to obtain mirror formulas for the analogues of the double and triple Givental’s J-functions (with descendants at all marked points) in this setting. We then observe that the genus 0 stable quotients invariants need not satisfy the divisor, string, or d...

متن کامل

GENUS g GROMOV-WITTEN INVARIANTS OF DEL PEZZO SURFACES: COUNTING PLANE CURVES WITH FIXED MULTIPLE POINTS

As another application of the degeneration methods of [V3], we count the number of irreducible degree d geometric genus g plane curves, with fixed multiple points on a conic E, not containing E, through an appropriate number of general points in the plane. As a special case, we count the number of irreducible genus g curves in any divisor class D on the blow-up of the plane at up to five points...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014